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The deformation of a drop as it flows along the axis of a circular capillary in
low Reynolds number pressure-driven flow is investigated numerically by means of
boundary integral computations. If gravity effects are negligible, the drop motion
is determined by three independent parameters: the size a of the undeformed drop
relative to the radius R of the capillary, the viscosity ratio A between the drop phase
and the wetting phase and the capillary number Ca, which measures the relative
importance of viscous and capillary forces. We investigate the drop behaviour in
the parameter space (a/R, 4, Ca), at capillary numbers higher than those considered
previously. If the fluid flow rate is maintained, the presence of the drop causes a
change in the pressure difference between the ends of the capillary, and this too
is investigated. Estimates for the drop deformation at high capillary number are
based on a simple model for annular flow and, in most cases, agree well with full
numerical results if 1>1/2, in which case the drop elongation increases without
limit as Ca increases. If A <1/2, the drop elongates towards a limiting non-zero
cylindrical radius. Low-viscosity drops (A< 1) break up owing to a re-entrant jet
at the rear, whereas a travelling capillary wave instability eventually develops on
more viscous drops (4> 1). A companion paper (Lac & Sherwood, J. Fluid Mech.,
d0i:10.1017/S002211200999156X) uses these results in order to predict the change in
electrical streaming potential caused by the presence of the drop when the capillary
wall is charged.

1. Introduction

The main aim of the work presented here and in a second paper (Lac & Sherwood
2009) is to determine how the presence of a liquid drop disturbs the electrical streaming
potential generated by pressure-driven flow through a capillary with charged walls.
We shall assume that the electric fields generated by the flow are sufficiently small
that perturbations to the flow field due to electric stresses are negligible. The first step
of the computation is therefore to determine the hydrodynamic behaviour of a drop
as it flows through the capillary, in the absence of any electrical effects. This problem
is of sufficient importance in its own right that it is discussed separately in this first
paper. Electrokinetic effects will be considered by Lac & Sherwood (2009).

The motion of a drop in a straight capillary represents an idealized two-phase
flow in a porous medium: the geometry of a realistic porous material (e.g. rock)
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is much more complex. The presence of the drop is known to modify the pressure
difference necessary to maintain a given flow rate, or equivalently, the flow rate driven
by a constant pressure difference (Olbricht 1996). We compute the flow field due
to the motion of the drop in the capillary at a given steady flow rate, assuming
creeping flow conditions. The motion and deformation of a drop in a pressure-
driven flow is a classical hydrodynamic problem. Experimental data (e.g. Ho & Leal
1975; Olbricht & Kung 1992) and analytical models (e.g. Goldsmith & Mason 1963;
Greenstein & Happel 1968; Hyman & Skalak 1972; Hodges, Jensen & Rallison 2004)
are available in the literature. Computations of the motion of a drop in a capillary have
also been reported, using finite-element techniques (e.g. Westborg & Hassager 1989;
Edvinsson & Irandoust 1996) or the boundary integral method (Martinez & Udell
1990; Tsai & Miksis 1994). Nonetheless, little is known about the drop behaviour at
large capillary numbers. Our work confirms some of the earlier studies cited above,
and we present new computational results for highly elongated drops in pressure-
driven flow at higher capillary numbers than those previously studied.

The governing equations for the hydrodynamics are set down in §2; in particular,
the boundary integral equations used to determine the inertialess flow field are given
in §2.2. Section 3 presents our numerical method for deformable drops of arbitrary
size and for spherical drops of infinite surface tension fitting in the tube. We first
present asymptotic predictions for long slender drops moving along the centreline of
the capillary (§4). Numerical results for deformable drops of arbitrary size follow in
§5, and instabilities at high capillary numbers are reported in §6.

2. Governing equations
2.1. Hydrodynamics

We consider the motion of a liquid drop in a cylindrical capillary of radius R filled
with another liquid. The drop consists of an incompressible Newtonian liquid of
dynamic viscosity j1, density p and volume 7¥"; its size is characterized by the radius
a of the sphere of the same volume 7 = %ncﬁ. The suspending liquid has dynamic
viscosity u and density p = p identical to that of the drop, so that the drop is neutrally
buoyant. The coefficient of interfacial tension between the two phases is denoted by y.
Fluid flows at constant volumetric flow rate TR?>U under the action of a pressure
gradient along the capillary.

In the absence of the drop, the (single-phase) flow reduces to a Poiseuille flow, with

R>G,
8
where Gy is the (uniform) pressure gradient. The boundaries of the domain are the
entrance and exit sections %5, and %, the solid surface of the capillary %, and
the drop/medium interface &, as depicted in figure 1. Note that, hereafter, barred
variables refer to the drop phase.
The Reynolds number Re=pRU/up is usually small in flow through low

permeability porous media. Accordingly, we assume that the motion of both fluids is
governed by the Stokes equations:

Vu=0 (resp. u), (2.2a)
uVu=VP—pg=Vp  (resp. i, &, P,p, p), (2.2b)

U= , (2.1)

where u, P and g denote the velocity, pressure and acceleration due to gravity, respec-
tively, and the modified pressure p = P — p x - g includes the gravitational body force.
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FIGURE 1. Representation of a drop suspended in a pressure-driven flow.

We assume that the wetting phase satisfies a no-slip condition at the capillary wall
ux)=0, Vx € %,. (2.3)

Far behind and ahead of the drop, the outer flow reduces to a Poiseuille flow, since
the flow perturbation generated by a point-force distribution decays exponentially
down and upstream (Liron & Shahar 1978). We assume that the cross-sections %,
and %, are sufficiently far from the drop that the flow perturbation has already
vanished, and so the boundary conditions at the ends of the capillary are

2
u(x) = u*(x) = 2U (1 - ;2> e, Vx € SnU L, (2.4a)
uUr
o(x)n=—pye, —4 72 e, Vx € %, (2.4b)
U
G(X) 1 = pou €, + 4 "Rzr e, Vx e L, (2.4¢)

where (x,r, ¢) denote cylindrical coordinates with unit basis vectors (e,, e,, e,), n
is the unit normal vector pointing inward into the suspending liquid and o is the
Newtonian stress tensor with respect to p.

On any point x of the drop interface ., kinematic and dynamic conditions are

ox
—, 2.5
57 (2.5a)

Af =2y n, (2.5b)

ulx)=u(x)=

where Af = (6 — &) - n is the jump of viscous traction across the interface and «
denotes the mean curvature of the surface.

2.2. Boundary integral formulation

Taking into account the continuity of the velocity field (2.5a), the Stokes problem
(2.2) may be formulated as a boundary integral equation (Pozrikidis 1992), where the
velocity u at point x is given by

4npu(x) = 7{9 Jx. ) f(3)dS() + ﬁ u(y)-K(x. )*n(y) dS(y)

2
- 75 J(x. )+ AF(y)dS(y) + (1 — ) f u(y)-K(x. y)-n(y)dS(y). (2.6)
4 4

In (2.6), 052 = S, U %, U Y, f represents the viscous stress o -n at the boundary
9£2, n is the unit normal vector pointing inward into the suspending liquid and Af
is defined by (2.5b); J and K are the free-space Green’s functions given, in Cartesian
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coordinates, by

(S," ?ir‘
Jij(x,y)=71+,¢73] and  Kiji(x, y) = —6

A A A
r,-rjrk
P

(2.7)

with # =y — x and 7 = |F|. The value of B8 in (2.6) depends on the position of x; in
particular,

(2.8)

= w+in ifx e,
] if x € 982.

According to the set of boundary conditions (2.3)—(2.5), the unknowns of (2.6) are the
interfacial velocity u on ., the viscous stress at the wall f* and the pressures p;, and
Pour- Adding a constant pressure in the stress field does not change the formulation
(2.6), since

7§D Jx. y) n(y)dS(y) = 0 (29)

for any domain D and any point x in space. Consequently, we may impose arbitrarily
Pin OF pou, and only the difference

Ap = Pin — Pout (210)

is unknown. For simplicity, we set p;; =0, and seek p,,. Furthermore, since the
pressure at %, yields the normal stress on the wall at the end of the capillary, p,,
may be replaced by — f*(x € %) in (2.6), which shortens the list of unknowns to
the velocity u on the drop interface and the stress distribution f” at the capillary
wall.

In the absence of any drop, the pressure difference required for Poiseuille flow along
a capillary of length L,, is

8uUL,

R?
In addition to finding the drop shape and velocity, we shall also be interested in the
additional pressure drop

Apy=—GoL, = (2.11)

Apa = Ap — Apyg (2.12)

necessary to maintain the volumetric flow rate TR?U in the presence of the drop.

2.3. Dimensional analysis

Natural scales for lengths and velocities are the radius R of the capillary and the
mean velocity U of the imposed flow, respectively. A convenient scale for stress is then
the typical viscous stress wU/R, and time is naturally scaled by R/U. The interface
stress balance (2.5b) reveals the importance of the viscosity ratio A=j/u and the
capillary number

Ca = ﬂ (2.13)
14
which compares the magnitude of viscous stresses with interfacial tension.

Hence, the hydrodynamic problem has three independent parameters: the relative
size of the drop o =a/R, the viscosity ratio 41 and the capillary number Ca. Note
that hereafter, an asterisk denotes a dimensionless quantity, according to the scaling
proposed above.
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3. Numerical method
3.1. Discretization of the problem

If we consider axisymmetric configurations only, the surface integrals in (2.6) can
be analytically calculated in the azimuthal direction in terms of elliptic integrals
(Pozrikidis 1992, §2.4). Consequently, surface integrals reduce to line integrals along
the profile of the different boundaries, and only these profiles need to be discretized.

The drop profile is divided into N elements defining N +1 nodes (x°, ..., x"),
where the two extreme nodes lie on the axis of revolution. Between two neighbouring
nodes, the interface is interpolated with a cubic B-spline:

N+1

x(E,1) =Y ¥(t) Bu(§), (3.1)

k=—1

where the Bj are piecewise cubic polynomials and X, are the spline coefficients
associated with x at time 7. The parameter & runs from O to 1, such that £=0
and £ =1 correspond to the nodes x° and x", respectively. For each scalar variable,
the spline representation (3.1) requires N + 3 spline coefficients and two boundary
conditions imposed on the axis of revolution. For a variable that vanishes on the
axis owing to the axisymmetry of the problem (such as the radial component of any
vector field), we impose that the second derivative with respect to & be zero at x° and
x". Otherwise, we require the first derivative to be zero.

The capillary wall is discretized in a similar fashion with N, elements, but the
two extreme wall nodes x% and x2» are, respectively, located on the entrance and
exit sections, where boundary conditions are imposed. These sections are located at
a distance x = + L,,/2 from the drop centre of mass, so the tube has a total length
L, = O(10 R). Note that since N,, is a priori different from N, a separate set of N, + 3
basis functions B”(£) must be calculated.

In the spline coefficient space, the integral equation (2.6) yields a linear system of
size 2(N + 3) + 2(N,, + 3), which we solve using the open-source library Lapack. Part
of this linear system is built with 2(N + 1) equations provided by the two components
of (2.6) at x = x/ along the drop profile (j =0, ..., N), and by appropriate boundary
conditions for # on the axis of revolution. The rest of the system is calculated similarly
by choosing x=x/ (j=1,..., N,—1), together with seven equations given by the
boundary conditions:

4uU afr 82fw
f T N S, V= — =0, Y = —pin=0, — =0;
o AuU afy 9 fu
forx € %NS, [ =—"r S5 =0, =25 =0, (3.2)

The missing equation is indifferently given by either component of (2.6) for x in %,;
we place this point on the axis for convenience and use the x component of (2.6).

When the drop and the outer liquid have the same dynamic viscosity (4=1),
(2.6) simplifies because the double-layer integral over ., containing the unknown u,
disappears. In this particular case, a separated integral equation may be written for
f¥ by picking x on 952, since u is known everywhere on 982 ((2.3) and (2.4a)). The
size of the linear system to be solved is then 2(N,, + 3). Once f" is determined, (2.6)
with A=1 allows for a direct calculation of u(x) on .&.
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The drop interface is convected according to

83—); = u,(x)n(x), (3.3)

where x is an interface node and u, =u-n is given by (2.6). At each time step, the
interface is re-meshed to ensure a denser distribution of nodes in high-curvature
regions. Owing to the imposed flow rate TR?U, the drop is convected downstream
along the capillary. In order to simulate an infinitely long tube, we subtract at each
time step the velocity of the drop centre of mass V=V e, from the velocity field,
which is equivalent to replacing u, by u),=u, — V-n in (3.3). This process does not
affect the stress field and, therefore, does not influence the drop shape. Evidently, it is
valid only for a straight cylindrical capillary, the shape of which remains unchanged
as the drop is re-centred.

Equation (3.3) is solved numerically by a second- or fourth-order Runge—Kutta
method, depending on the desired accuracy. A satisfactory steady state is obtained
when the maximum absolute normal velocity |u),|/U on % is smaller than a chosen
tolerance (~ 1073, typically).

The flow is suddenly started at time r =0, with a flow strength characterized by Ca.
If the drop is sufficiently small to fit undeformed in the tube without touching the
wall (a < R), its initial shape is spherical. Otherwise, we place in the flow a spheroidal
drop of volume %”a-” and breadth R; < R (we arbitrarily choose R; =0.95 R). If the
flow strength is abruptly modified at t =t, from Ca; to Ca,, we usually start the
simulation from the steady drop shape (if any) obtained at Ca;.

In our simulations, N ranges from 50 to 256, and N,, from 100 to 400, depending on
the tube length (which itself depends upon the drop volume). To maintain numerical
stability, the dimensionless time step At¢* (scaled by R/U) has to be sufficiently
small owing to the explicit numerical resolution of the advection equation (3.3); the
maximum stable value of At* decreases as either o, Ca or / decreases, and as N
increases. Since the velocity given by (2.6) is divergence-free, the change in the drop
volume during simulations gives an estimate of the accuracy of the computations.
We observed in the worst cases a maximum relative volume variation of order of
10~* over a full simulation (~ 10°-10° time steps). These cases usually correspond
to large drops (a>1.5), small capillary numbers (Ca ~ 1072) and large viscosity
contrasts (A~' or A>> 1), since =0 and 41— oo correspond to eigenvalues of (2.6);
it is possible to remove these eigenvalues (see §4.6 of Pozrikidis 1992), though we
have not implemented this method here. We show in figure 2(a) the typical volume
variation observed for two discretizations: N =50 and N =125. We also plot the time
evolution of the maximum normal velocity in the frame of reference moving with the
drop, expected to vanish at steady state (figure 2b), and observe that the final steady
drop shape is independent of N (figure 2¢).

3.2. The mobility problem for spherical drops

The limit Ca =0 corresponds to an infinitely large interfacial tension that prevents
deformation of the drop by the flow. This case cannot be tackled by the method
described above because the condition (2.5b) is undetermined. Instead, we assume
that the drop shape is known, and treat the stress distribution Af as an additional
unknown to be determined. Note that this approach is valid only when a <R, i.e.
when the spherical drop fits within the tube. Since the tangential viscous stress is
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FIGURE 2. (a) Drop volume variation AY" = “V—%”cﬁ and (b) maximum normal velocity |u'- n|

(u' =u—"Ve,) as a function of time; (c) steady drop profile at r* =25. Two drop discretizations,
N =50,125; a =1.1, Ca=0.05, A=10; At* =5x1073; tube length L, =10 R.

continuous across the drop interface, we seek Af = Af,, n. We impose

]{ Afan dS =0 (3.4)
9

because the drop is freely suspended in the flow. The translational velocity V is
unknown, and must be chosen so as to ensure

(u—Ve,) n=0 (3.5)

everywhere on the drop surface.

The boundary integral problem (2.6) with unknowns (u, f*, Af,, V) is singular
since it admits an infinity of solutions. Indeed, an arbitrary uniform pressure py may
be added to the stress distribution Af,, since

fJ-ndSzO and fndSzO. (3.6)
iz %

Therefore, we solve the mobility problem by means of a singular decomposition of the
linear system induced by (2.6), seeking the minimum norm solution (Lapack routine
DGELSS). This procedure boils down to selecting the normal stress distribution that
has a zero mean value over the drop surface. Analytic results for an asymptotically
small droplet (Hetsroni, Haber & Wacholder 1970; Brenner 1971) are available in the
literature and will be used in §5 to validate this method in the limit o < 1.

4. Asymptotic analysis for a long slender drop in a capillary

We consider a laminar annular flow of two liquids driven by a pressure gradient
G in a capillary of radius R. The inner liquid, of viscosity Au, occupies a cylinder
of radius RS < R, and the outer liquid, of viscosity wu, occupies the annular film of
thickness 4 = (1 — §)R. Continuity of the fluid velocity # and of the tangential stress
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across the interface yields

4£(r2—R2) e, RS <r <R,
u(x) = g (4.1)
M‘rz +(A—1)8°R*—AR*} e,, 0<r < RS.
The total volumetric flow rate through a tube section is
R R4
Q=2n/ u~exrdr=—nG I+ =1)8, (4.2)
0 8u
and if we define the mean velocity U such that Q =nR?U, the pressure gradient is
sulU _ _
G=— B I+ @' =18 (4.3)
If the inner cylinder represents a long, but finite drop moving with velocity V, then
RS 4
n(R8)’V = 2n/ u-e.rdr= “gR (2% — 282 —8*271), (4.4)
0 w
so that
v GR? 22+(1—20)8
L 24+ =)V =2 - T 4.5
U SMU{ i )5} A+ (1—2)8* (45)

Equation (4.5) reveals that elongated drops with 1 < 1/2 may travel faster than 2U,
the maximum velocity of the suspending fluid, whereas V < 2U otherwise.

When the capillary number is small, the drop fills the width of the tube, and
hydrodynamic interactions with the wall play an important role in determining the
deformation of the drop. As Ca increases, viscous forces increase and the drop deforms
further, becoming longer and thinner, with its surface closer to the centreline of the
capillary and farther from the wall. Capillary forces increase as the drop becomes
thinner, and we now examine whether the diameter of the cylindrical drop can be
controlled by the balance between capillary and viscous forces at the front end of
the drop. For thin slender drops (8 < 1), the velocity of the drop relative to the
unperturbed velocity 2U along the centreline is, by (4.5),

V —2U = =802 —2"HYU —28*0"" — 1)U + 0(5°0). (4.6)

This relative velocity, acting on an approximately hemispherical end cap, produces
stresses of order u(2U — V)/(RJ) on the surface of the drop. However, we expect
these to be balanced by hydrodynamic stresses within the drop, without causing
deformation, as found by Hetsroni et al. (1970) for a small spherical drop on the
centreline of Poiseuille flow. Hetsroni et al. showed that deformation was caused by
flow perturbations due to the presence of both the wall and the drop. Disturbances
to Stokes flow in a capillary of radius R decay exponentially over a length scale O(R)
(Liron & Shahar 1978), and the viscous stress perturbation at the front and rear of
the drop due to the presence of the walls is of order u(2U — V)/R. The external
shear stresses on the surface of the drop are balanced by internal shear stresses, with
corresponding internal velocity perturbations of order §(2U — V)/(1+ A): perturbed
normal stresses within the drop are therefore of order Au(2U — V)/[(1+ Z)R]. The
sign of the hydrodynamic normal stress balance is not given by these arguments,
but V < 2U if A=1/2, by (4.5), and velocities at the front of the drop, shown in
figure 3(b), are such as to tend to stretch the drop and reduce §. A balance between
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FIGURE 3. (a) Normal stress distribution f” = — p at the wall; (b) steady drop profile and
streamlines (in the reference frame moving with the drop); (c¢) wall shear stress f; a =1.1,
Ca=0.05, 2=10. Dotted lines: single-phase (Poiseuille) solution. The common x-axis is the
dimensionless length x/R along the capillary; the computational domain is |x| < 5R.

normal viscous stresses and capillary forces of order y/Ré& becomes possible if
20—V y

R RS’
and we shall see in §5.2, by comparison with full numerical computations, that the
sign in (4.7) is correct. Hence, using (4.6),

§~Q—=iNYYca B 1>1)2 (4.8)

A=1/2, (4.7)

I

This suggests that very viscous drops will be slimmer than less viscous drops. The
analysis leading to (4.8) requires the first term on the right-hand side of (4.6) to
dominate the second term, ie. 2 — A~' > Ca=?/°. If A=1/2, the first term on the
right-hand side of (4.6) vanishes, and the stress balance over the front end of the
drop leads to

§~Ca ', 1=1)2, (4.9)

rather than (4.8). If 1 < 1/2, the sign of the hydrodynamic normal stress term in (4.7)
is such that the stress balance (4.7) fails: we shall see in §5 that at sufficiently high
capillary numbers, a low-viscosity drop translates at a velocity V greater than the
unperturbed velocity 2U on the centreline of the capillary. Streamlines near the front
of the drop are then quite different from those in figure 3(b). Moreover, numerical
results (§5.2) show that if A < 1/2 the radius of the cylindrical drop tends to a non-
zero limit §... The gap between the drop and the capillary wall does not become large
compared with the drop radius, and the deformation of the drop is not controlled
solely by normal stresses at the front of the drop along the axis of the capillary.
Nevertheless, we shall see in § 5.2 that when A < 1/2 the film thickness & at the wall is
close to that predicted when an infinitely long finger (rather than a drop) of viscosity
A enters the capillary. Such a finger has no rear end, suggesting that the front of the
finger or drop controls the film thickness A for all A.
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Inserting (4.8) and (4.9) into (4.6), we find that the drop velocity at high Ca takes

the form
Vi —2~—Q2=2YHYPca?B, 1>1/2; (4.10a)
~—=Ca*’,  1=1)2. (4.10b)

If the drop shape is approximated by a cylinder with two hemi-spherical caps of
radius R§, the length [ of the cylindrical part is given by

L4 5 30

— =~ = —8°)87°. 4.11

Ex @ =8 (4.11)
The pressure gradient in the absence of any drop is Go= — 8uU/R?, and so the

increase Ap, in pressure caused by the cylindrical part is

Ape¥D _(Go—=G)l 32 (1- 7) 82
wU/R -~ wU/R 3 A+(1—2)6
The contribution to the pressure drop of the end caps when § <1 is comparable

to that caused by a spherical drop of radius a = RS. Brenner (1971) found that the
pressure drop due to a small, force-free spherical drop of radius a =«aR is

Ap, 16 2+ 97)*> — 40
uU/R 27 (14+2)(2+32)
which suggests an end-cap correction

Aplcar)
Pa_—" _ &5 (4.14)
nU/R
When § < 1, this correction appears to be a priori much smaller than the contribution
(4.12), unless 4 is very close to 1. Therefore, according to (4.8), we find that the change
in pressure caused by the presence of the drop, in the limit Ca > 1, is given by

(o —8%). (4.12)

o + 0(a'), (4.13)

R
7 Apy ~a*(1=2"H2—=2"1H2P ca™? for 2>1)2. (4.15)
7
This leading-order increase in the pressure vanishes if A= 1, which is expected since
the contribution of the annular flow to Ap, vanishes, as seen in (4.12). In this case,
the additional pressure drop is solely due to viscous stresses at the end caps. Hence,
combining (4.14) and (4.8), we obtain

R Ap, ~ Ca™? for J=1. (4.16)
ntu
When 2=1/2 and Ca > 1 the drop radius § is given by (4.9), rather than by (4.8),
and so (4.12) predicts that the change in pressure is
R 5

— Apy ~ —a® Ca™?

U for 2=1/2. (4.17)

5. Arbitrary drop size

We now investigate numerically the effect of the parameters o, Ca and A on the
drop deformation, its translational velocity and the additional pressure drop. The
influence of the viscosity contrast is investigated by comparing the results obtained
for three values of 4. We choose A=0.1 and 10 to address the cases of low- and
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(a) - (b) C(( j

x/R

FiGURre 4. Effect of drop volume on the steady drop profile for Ca=0.05, 2=0.1, 1, 10; (a)
moderate drop sizes, « =0.6, 0.8, [0.1], 1.3; (b) steady drop profile and wall shear stress, « =2;
dotted, wall shear stress in the film region calculated from V using (4.5) and (5.1).

high-viscosity drops, respectively, and A=1 to highlight the effect of size and
capillarity, independently of viscous effects.

We show in figure 3 the typical result of a simulation, i.e. the steady drop shape
and the wall stress for set values of A, @ and Ca. The streamlines reveal the typical
flow patterns inside and outside the drop in the reference frame moving with the drop
at constant velocity. Note that in this reference frame, the capillary wall moves at
constant velocity —V, ie. from right to left in figure 3(b).

The inner flow consists of three recirculation zones revealing the existence of two
stagnation rings on the surface, in addition to the two stagnation points on the axis
imposed by the axisymmetry of the flow. These vortices are due to the motion of the
drop along the capillary at a velocity larger than the mean flow velocity U, as will be
shown later in further detail. Figure 3 only shows two recirculation eddies inside the
drop; the third one is located at the rear of the drop, but could not be drawn owing
to the very small velocity of the inner fluid in this region.

The analysis of the viscous stress at the wall indicates that the perturbation due to
the presence of the drop rapidly vanishes up- and downstream, as the stress reduces
to that of a single-phase pressure-driven flow (uniform pressure gradient —8uU/R?
and wall shear stress —4uU/R). This validates the hypothesis of undisturbed flow
sufficiently far from the drop made in §2. The normal stress f* = — p at the wall,
and so it is straightforward to use f away from the drop (where the pressure is
uniform over the tube cross-section) to calculate the additional pressure difference
Ap, needed to maintain a flow rate TR>*U when the drop is present in the capillary.

5.1. Effect of drop size

Figure 4 shows the steady drop shape and the wall shear stress for different drop
volumes at Ca =0.05, and for three different viscosity ratios (A=0.1, 1, 10). In all
cases, the deformed shape is asymmetric: since the drop is placed in a pressure
gradient, the curvature at the front is higher than that at the rear. This is a general
feature of deformable drops flowing in tubes (Martinez & Udell 1990). For a given
capillary number, the drop deformation is small and depends little on 4 when the
drop is sufficiently small (e.g. « < 0.6 for Ca =0.05 in figure 4a). Size effects become
clearly visible in figure 4(a) for o > 0.9 owing to the increased drop deformability
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FiGure 5. Effect of drop size on the additional pressure drop for A =0.1 and different capillary
numbers. The dotted line shows the analytic prediction (4.13) of Brenner (1971) for a small
spherical droplet. Inset: (4.13) and Ca =0 in logarithmic scaling.

and the presence of the wall. Overall, an asymptotic situation is reached for o > 1.1,
approximately, where the front and rear of the drop are unchanged and where an
increase in drop volume merely lengthens the drop (Ho & Leal 1975; Martinez &
Udell 1990). When the drop is sufficiently large, a uniform viscous film appears
between the drop and the wall. The film thickness 4 = (1 —38)R can be calculated from
the drop velocity V using (4.5). In the film region, the wall shear stress is that of an
annular flow:

X

fl = —4% {1+ =& (5.1)

The dotted lines in figure 4(b) show, for very long drops (e =2), the wall stress
(5.1) calculated from the drop velocity V obtained numerically. The good agreement
between the wall stress (5.1) and the results of the full numerical simulations shows
that the determination of z from the computed drop velocity V and (4.5) is valid. The
film thickness measured from the drop profile also matches the value of & determined
from V (up to four digits). The high-viscosity drops undergo a larger shear stress and
therefore are more deformed than low-viscosity drops. For the same reason, the film
thickness between a large drop and the wall increases with A.

We show in figure 5 the additional pressure difference Ap, between the extremities
of the tube due to the presence of the drop as a function of the drop size, for various
capillary numbers and A=0.1. Generally speaking, when 4 < 1, part of the fluid in
the tube has a lower viscosity than the suspending liquid, which makes it easier to
drive the flow at a fixed flow rate. Consequently, Ap, tends to be negative. However,
capillary forces have to be overcome to deform the drop, with Ap, >0 when Ca is
small. At intermediate capillary numbers, the competition between these two effects
may lead to a non-monotonic variation and a local maximum value of Ap; as the
drop size varies. In the limit case of a spherical drop (Ca =0), the capillary forces
are infinitely greater than the viscous forces, and the (non-dimensional) additional
pressure tends to infinity as the drop size approaches that of the tube (« — 1).

In the absence of viscosity contrast (=1, figure 6b), only capillarity matters. In
this case, the disturbance on the pressure field is exclusively due to the front and



Motion of a drop in a pressure-driven flow 39

(@ -1072 T N T T T T T
I — Ca=0 ]
0 E ) |
10 [ 10/ .' 0.05 |
ap, NOF 0.40 ]
uUIR [ ]
_10'E E
73 2=0.1 ,
-10%f e N
E " L " 1 PR R | 1 \\_
0.1 0.5 1.0 2.0
o=alR
(b) 107 - ————— .
A=1 Ca=0
10! 005
Ap, [
wUR 107
107
—2
10735
(c) 10
100 F
Ap, i
wUR  10°F E
10 E 5
) 7 i i i e i
1071 0.5 1.0 2.0

o=alR

FIGURE 6. Same as figure 5 in logarithmic scaling3and for three values of A. Thick dashed
lines, ~ +a”.



40 E. Lac and J. D. Sherwood

rear of the drop, and the effect of an asymptotic drop shape is clearly marked by the
appearance of a plateau value of Ap; as the drop size increases. This plateau value
depends upon Ca since the additional pressure drop is solely due to capillary effects.

For high-viscosity drops, both capillarity and viscosity contrast contribute to
increase the pressure drop (see figure 6¢ for 42=10). As will be discussed in §6,
a capillary instability develops for high-viscosity drops above a critical Ca, and the
drops enter an oscillatory regime. In this case, error bars in figure 6(c) (and in other
figures) indicate the oscillation amplitude around the mean value (e.g. « =0.9 for
Ca=0.5 in figure 6¢), though the error bars are generally smaller than the plotted
symbols.

Figure 6 shows that up to a =0.5 R, typically, our numerical results for spherical
drops (Ca=0) are in good agreement with the result (4.13) of Brenner (1971) for
asymptotically small drops. The numerical results for deformable drops (Ca # 0)
depart from those obtained for Ca=0 as both « and Ca increase, since these two
parameters determine the drop deformability.

The drop translational velocity V is shown in figure 7 as a function of « for different
capillary numbers and two values of 4. For a vanishingly small droplet moving along
the centreline of a capillary, Hetsroni et al. (1970) give

.V 44
VEUT A
As o — 0, the drop velocity V approaches the unperturbed fluid velocity 2U on the
axis. For sufficiently large drops, a uniform film forms between the drop and the wall.
The film thickness % is then determined by the balance between viscous and capillary
forces at the end caps, depending solely on Ca and A. Since the drop velocity V is
given by h and 4 through (4.5), the drop is expected to move at constant velocity
above a certain volume. This situation is clearly visible in figure 7, where we find that
the plateau value of V" is reached for o > 1.1, typically.

o’ 4+ 0(a?). (5.2)

5.2. Effect of the capillary number

Figures 8(a) and 8(b) show, for two drop sizes, the steady shape of a high-viscosity
drop (4= 10) under an increasing flow strength. Noticeably, the drop exhibits a bulge
at the rear and rapidly elongates as Ca increases. A steady state cannot be attained
above a critical capillary number, owing to the appearance of a capillary instability
leading to a oscillatory regime discussed in §6. The most deformed profiles in figures
8(a) and 8(b) correspond to the highest capillary number for which we could identify
a steady state.

When /4 is reduced to 0.1 (figure 8¢, d), the drop no longer exhibits a rear bulge
above a certain capillary number (e.g. Ca =0.5 in figure 8d), and ultimately shows a
tendency to dimple at the rear. As observed in § 5.1, a low-viscosity drop is clearly less
deformed than a high-viscosity drop at a given capillary number (figure 4a). Above
a critical capillary number, the rear dimple turns into a jet as surface tension is no
longer able to balance viscous stresses. This phenomenon, observed experimentally
(e.g. Olbricht & Kung 1992), is described in § 6.

The effect of Ca on the drop velocity V and the additional pressure drop Ap, is
illustrated in figures 9-14. As Ca increases, the drop becomes more elongated and
its surface is farther from the capillary wall: it therefore moves faster. We recall that
when o < 1 the undeformed drop fits in the capillary and the hydrodynamic problem
admits a solution for Ca =0 (§3.2). However, this solution is off to the left of the
logarithmic scale, which explains the peculiar aspect of the plots in figures 9(a) and
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three values of 4. Dotted lines: asymptotic prediction (5.2) of Hetsroni et al. (1970) for o < 1.
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FiGUure 8. Steady drop profile at increasing capillary number; (a) A=1
Ca=0.05,0.1,[0.1],0.5; (b) A=10, a¢=1.1, Ca=0.050.1,0.2,0.3; (c) 21=0
Ca=0.05,0.2,0.5,1,2; (d) A=0.1, « =1.1, Ca=0.05,0.2, 0.5, 2.35.
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FIGURE 9. Dimensionless velocity V*=V/U vs. Ca for 2=0.1,1,10 and different drop
sizes: ®, «=0.8; O, «=1.1. The dotted line shows the velocity of a Bretherton bubble,
V* ~ 141.29(3 Ca)*?; (b) same as (a), but showing how V approaches the axis velocity 2U
as Ca increases, for « = 1.1 and 12>0.5; dashed, ~ Ca=?/3; dotted, ~ Ca—*/>.

12 for @ =0.8, where we have interpolated the plotted quantity between Ca =0 and
the first non-zero Ca computed numerically.

In figure 9, we plot V—U vs. Ca to illustrate how much the drop velocity exceeds the
average velocity of the suspending fluid. For drops fitting undeformed in the capillary
(o < 1), the finite value of V* =V /U obtained for Ca =0 decreases as 1 increases owing
to the increasing drag induced by the wall. We also note that (dV*/9Ca)c, =0 =0,
which means that when o <1, V* increases only slowly with Ca (up to Ca~ 1072,
typically). If « > 1, the drop cannot flow in the capillary without deforming. For long
inviscid bubbles (4 =0), Bretherton (1961) showed that as Ca — 0, the drop velocity
approaches the mean velocity of the outer flow according to V* ~ 1+ 1.29(3 Ca)*>.
Note that in the limit Ca < 1, our capillary number, based on U, is the same as
Bretherton’s, based on the bubble velocity V. We observe in figure 9 that our results
approach Bretherton’s asymptote as A decreases. Moreover, as shown by Hodges et al.
(2004), we see that V* — 1 ~ Ca?*/* as Ca — 0 for all values of A, where the multiplying
factor is a decreasing function of A (viscous drops are always slower than an inviscid
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FIGURE 10. (a) Film thickness 2* =h/R vs. Ca for long drops and different values of 4; dotted,
the Bretherton bubble, 1" ~ 1.3375Ca?/?; (b) drop breadth § =1 — h* vs. Ca for the same
values of / as in (a); dashed, ~ Ca~'/3; dotted, ~ Ca~'/°; @, experimental results of Taylor
(1961).

bubble owing to the shear stress in the viscous film between the drop and the capillary
wall).

At high capillary numbers, the velocity of the drop exceeds the axis velocity 2U
for A=0.1 (figure 9a), as predicted in (4.5) for 1 <0.5. This was also observed in
our simulations for 4=0.01, 0.05 and 0.2, although these results are not shown in
figure 9(a) for clarity. For sufficiently viscous drops (4=0.5), on the other hand,
V approaches 2U from below as Ca increases; the balance between viscous and
capillary forces at the drop tips leads to 2 — V*~ Ca=*> for A=0.5 and ~ Ca=? for
4> 0.5, (4.10), as observed numerically for 4 =0.5 and 2= 10 (figure 95). When 1=1,
however, the agreement with (4.10) is somewhat poorer.

Figure 10 shows the evolution of the dimensionless drop breadth § and film
thickness 4" =1 —§ as Ca increases, for long drops and a wide range of viscosity
ratios. Figure 10(b) clearly shows the difference between low-viscosity drops (4 <0.5),
high-viscosity drops (4>0.5) and the special case 4=0.5. For 0<1<0.5, our
numerical results suggest that the film thickness 4" is bounded above by a limit
1 — 38, corresponding to

21-221 . Ve 5041 —2)+10(1 —24)?

2= —""je = ,
© T35 " U T Bsai—a+4d—2ip

L<1/2.  (53)

We find that both § —§, and V. — V* ultimately decay as Ca~!, approximately.
Figure 11 shows the velocity V(8) predicted by the annular flow analysis (4.5), together
with the upper bound (5.3), for various values of 4. The limit #/R — 0 corresponds to
Ca — 0, for which V*=V /U — 1 for any value of / (Hodges et al. 2004). When Ca is
sufficiently large and the drop sufficiently long, we expect the cylindrical radius § to
be determined by flow at the front of the drop. The thickness & of the cylindrical film
around the drop should therefore be similar to that of the wall film left behind during
displacement of one fluid by another in a capillary. In experiments at a viscosity ratio
/.~ 2.5x 107, Cox (1962) found that as Ca becomes large, the fractional amount
m =1—§? of viscous fluid left behind the drop tends to the limit 0.60, which is indeed
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FIGURE 11. Velocity of a long drop as a function of film thickness /4 for various values of
A. Dotted line: approximate limit values of 4 and V given by (5.3) for 2 <0.5; O, last point
rez%ched 3in the present work for 4 < 1; @, results of Soares et al. (2005) for Ca>1 and
2~1=10°,12, 4.

the value given by (5.3) for 2 — 0. Soares, Carvalho & Souza Mendes (2005) used a
finite-element method to compute the displacement of viscous, immiscible fluids over
a wide range of capillary numbers and for viscosity ratios 1073 < 1 < 0.5. These
computations were supported by experiments at Ca’ < 0.3, where Ca’ is a capillary
number based on the velocity of the tip of the invading fluid. The computed film
areas 1 — &2 in their figure 11 agree well with (5.3) at Ca’ =100 (40 < Ca < 50) for
/~1'=10° 12 and 4 (e in figure 11) and suggest the absence of a limiting film thickness
when 4=0.5, in agreement with our own results. Although our simulations show &
increasing towards 8., as Ca increases, we could not approach the limit (5.3) as closely
as Soares et al. (see O in figure 11) owing to drop breakup occurring at the drop rear
(§6). This limitation does not appear in the work of Soares et al., who considered the
front of an infinitely long viscous finger advancing along the capillary.

Note that (5.3) implies an absolute maximal velocity of 2.5U, attained by an
inviscid bubble (1 =0) at infinite capillary number. This value has also been reported
by Dupont, Legendre & Fabre (2007), who studied a bubble in a capillary by
experiments and volume of fluid computations, and by Martinez & Udell (1989), who
performed a boundary integral analysis.

Figures 12-14 highlight the effect of the capillary number on the additional pressure
drop Ap,. Since capillary forces contribute to a rise of the pressure loss, it is natural to
observe that increasing Ca decreases Ap, (figure 12). At high capillary numbers, the
sign of Ap, is solely determined by / (negative for A < 1 and positive for 4> 1). When
A=1, the effects of viscosity contrast vanish, so Ap, rapidly tends to zero as soon
as the viscous stresses are sufficiently high to overcome surface tension, independent
of the drop volume (typically, Ca>0.3). We find that Ap; ultimately decays as
Ca=>3 for .=1 (figure 12b), as predicted by (4.16). When . # 1, the magnitude of
the disturbance |Ap;| increases with the drop volume. The combined effects of size
and viscosity contrast at high capillary numbers are clearly visible in figure 12 for
4=0.1,10 and @ =0.8, 1.1, 2. For /4> 1, we find, as predicted in §4, that Ap; evolves
as Ca—>/3 at large capillary numbers (figure 12b). For 2=0.1, on the other hand, Ap;
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seems to approach a plateau as the capillary number increases towards the maximum
value for which we could find a steady solution.

In figure 13 we investigate the variation of the additional pressure drop with Ca
in the case of long, low-viscosity drops (¢ =2, 4 <1). When 4=0.5, we find that at
high Ca and for two drop volumes (@ =1.1,2), Ap} evolves as —Ca~?/, as predicted
by (4.17). However, the analysis of §4 fails when 4 < 0.5, and we see in figure 13 that
Ap, 1s not decreasing towards zero at the highest capillary numbers for which the
numerical computations found a steady drop shape. Also shown in figure 13 are the
predictions of Bretherton (1961) and Ratulowski & Chang (1989) for long inviscid
bubbles (A =0) at vanishingly small capillary numbers. In Bretherton’s analysis, the
pressure drop Apjy ~ 10.026 Ca='/ is that across the bubble. Since the bubble is
inviscid, App is solely due to the end caps, independent of the bubble length L. With
our notation, however, Ap; = Apyp — 8L". In figure 13, we have approximated L for
a given volume by assuming a cylindrical shape with hemi-spherical caps of width
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FIGURE 13. Additional pressure drop vs. Ca for long, low-viscosity drops (¢, a =2, A1<1).
Dotted: the Bretherton bubble for o =2; dashed: asymptotic correction of Ratulowski &
Chang (1989); dot-dashed, ~ —Ca—%/° predicted for 41=0.5; O, « =1.1, 2=0.5. The double
arrow indicates a multiplying factor of (1.1/2)%3.
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FIGURE 14. Additional pressure drop Ap, vs. film thickness A for long drops (¢ =2). Thin
lines: asymptotic value (4.12) when the end caps are neglected; O, numerical results. Dotted:
approximate limit film thickness from (5.3) for 4 < 1/2.

R — h, where h ~ 1.3375 R Ca?? is the film thickness predicted by Bretherton as
Ca — 0. Similarly for Ratulowski & Chang (1989), with Apj. ~ Apy — 12.6 Ca=*%,
we observe that our numerical results approach these predictions for (4, Ca) < 1.
Figure 14 compares our numerical results with the annular flow predictions of §4
by showing the evolution of Ap, as a function of the film thickness & between the
tube wall and a very long drop (o« =2). The film thickness has been calculated from
the drop velocity V through (4.5). For 4 < 0.5, our numerical results indicate that the
dimensionless film thickness and additional pressure drop change very slowly as the
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FIGURE 15. Re-entrant jet for a low-viscosity drop; 4=0.1, « =1.1; Ca is increased from 1 to
2 at t =1y =0; dashed line: steady drop profile at Ca = 1.

capillary number increases towards the highest value for which a steady state was
obtained. This suggests the existence of limit points along the corresponding curves
in figure 14, and we show our conjecture (5.3) as a dotted line.

In figure 14, the difference between the full numerical computations and the curves
derived from the annular flow model of §4 allows us to estimate the total contribution
of the two end caps to the additional pressure drop Ap,. At all viscosity ratios, we find
(as expected) that the difference between our numerical results and (4.12) decreases as
Ca increases, since (a) the drop elongates, and () the capillary effects of the end-caps
decrease, by definition of Ca. Even when the viscosity ratio is small, the annular
flow model predicts the pressure drop surprisingly well at sufficiently high capillary
numbers (i.e. when i /R is sufficiently large in figure 14). At lower capillary numbers,
when the film thickness is small, the annular flow model still gives good predictions
when /1 is large since the pressure gradient (4.3) in the viscous film increases with
4, and the total pressure drop is more likely to be dominated by that in the film
around a sufficiently long drop (e.g. A=10 in figure 14). Conversely, as A — 0, the
fluid in the film is at rest, and Ap, is solely determined by the end caps (Bretherton
1961). Therefore, when 4 <1 and h/R <1 the approximation (4.12) holds only for
extremely long drops.

6. Oscillatory motion and drop breakup

We were unable to find steady drop shapes above a critical value of the capillary
number. The critical capillary number Ca, depends upon the drop size and the
viscosity ratio, and the post-critical drop behaviour depends upon the viscosity ratio.
For low viscosity ratios (4 < 1), the drop breaks up owing to the appearance of a
re-entrant jet at the rear (figure 15). The jet develops when the normal stress balance is
no longer achieved by surface tension. This phenomenon was observed experimentally
by Goldsmith & Mason (1963) and Olbricht & Kung (1992). It has also been captured
numerically by Tsai & Miksis (1994) from initially spherical or ellipsoidal drop shapes.
Note that the appearance of a re-entrant jet at a given capillary number does not
necessarily mean that no steady state exists for this value of Ca. Indeed, the instability



48 E. Lac and J. D. Sherwood

| —

Ficure 16. Flow pattern for A=0.01, « = 1.1, Ca =3.5. Note that V > 2U.
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FIGURE 17. (a) Travelling wave instability for a high-viscosity drop in the reference frame of
the drop centre of mass; =10, « =1.1, Ca=0.5. The capillary wall is shown for the first
(bottom) profile. The dimensionless period of the motion is approximately 32.5. (b) For the
same (4, a, Ca), time evolution of the maximum normal velocity |u’- n|,,. on the drop surface,
where w'=u — V; solid line: N =100, Ar* =0.005; dashed: simulation restarted from the
steady state obtained for Ca=0.3, N =160, At* =0.002; dotted: ~e’/* with t* =110.

shown in figure 15 develops when Ca is increased from 1 to 2, but is not observed if
Ca is increased from 1.9 to 2. This initial drop shape dependence of transient Stokes
flows after a significant step change in capillary number is well known (e.g. Stone &
Leal 1989). Finding the critical value Ca, requires a gradual increase of Ca by small
steps until no steady state can be attained. For example, for A=0.1, o =1.1 (as in
figure 8d), we identified a critical capillary number slightly above Ca =2.35 (the last
value for which a steady state could be found); increasing Ca from 2.35 to 2.40 led
to a jet. The values of Ca, reported below are mean values between the last stable
and the first unstable capillary numbers. The flow field in this case (figure 16) can
be likened to that around a confined Rankine ovoid formed by a source of strength
Q, =nR*U(1—2)8*/[ 2+ (1 —2)8*] near the front of the drop, together with an equal
and opposite sink near the rear of the drop, added to the unperturbed Poiseuille flow.
The sink at the rear of the drop ultimately causes instability due to an inward-pointing
jet of the exterior fluid.

For high viscosity ratios, the drop becomes very stretched as Ca increases, up
to the point where a capillary instability develops (figure 17a). The drop does not
break up, owing to its motion along the tube, and a travelling wave sets in and runs
through the drop from front to rear. These capillary waves resemble the inertia- and
gravity-driven waves seen by Bai, Chen & Joseph (1992) in an experimental study of
vertical two-phase pipeline flows. For the same parameters as in figure 17(a) (1= 10,
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a=1.1, Ca=0.5), figure 17(b) shows the time evolution of the maximum normal
velocity along the drop profile in the reference frame moving with the drop centre
of mass. We recall that in this reference frame, a steady drop appears fixed, because
the normal velocity u, =u'-n vanishes everywhere on the drop surface. We observe
that the drop initially evolves towards what we might expect to be a steady shape,
and |u,|,,. decreases. The appearance of the instability is clearly visible soon after
the drop has reached an almost steady shape, around ¢* =50, when |u/ [}, ~ 1073
The perturbation exhibits an approximately exponential growth, as would predict a
linear stability analysis, until it saturates as the instability gives way to the travelling
capillary waves depicted in figure 17(a). The wave is not fore-aft symmetric: the
normal velocity |u),|" is maximum on the leading (steeper) edge of the advancing
wave(s). Generated at the front of the drop, the wave crests move towards the rear
but stop growing at a distance O(R) from the front. When we start the simulation
from the steady state obtained for a lower capillary number (e.g. the dashed line in
figure 17b, where Ca is increased from 0.3 to 0.5), we find that the drop reaches the
same unsteady motion, proving that the observed behaviour is independent of the
initial conditions (at least when these conditions are not too far from the final state).
Figure 17(b) also demonstrates that the periodic motion is very well captured and
sustained by the simulations over long times (the number of time steps is of order
2x10°).

Neither the motion of the front of the drop nor that of its centre of mass is steady in
a frame fixed in the capillary. The centre of mass frame used for presenting the results
of figure 17 is therefore not an inertialess frame of reference. We have throughout
assumed a Reynolds number Re=pRU/u < 1, but when the drop is unsteady we
should also consider the time scale required for vorticity to diffuse across the drop.
The ratio of the magnitude of the unsteady term p du/d¢ in the Stokes equation
to the viscous term is of order pR?>/(Tu)=Re R/(UT), where T is a typical time
scale (the oscillation period, here). In all our simulations of oscillatory drop motion
we find TU/R > 20, and we conclude that if Re < 1 it is appropriate to neglect
the unsteady term in the Stokes equations. Note that the capillary waves appear to
travel at constant velocity in the centre of mass frame, but not in the reference frame
moving with the front of the drop. Although the waves are swept downstream, they
nevertheless perturb the motion of the front of the drop, via both interfacial and
viscous stresses.

Figure 18 shows how shape perturbations caused by a step change in capillary
number either grow or are damped. For sufficiently small capillary numbers, the
motion is stable, and the perturbation amplitude decreases exponentially with time.
As Ca increases, the drop extends and the viscous film between the drop and the
wall becomes thicker, allowing perturbations with larger wavelengths and amplitudes
to survive; the characteristic damping time increases with Ca, up to the point where
perturbations grow into sustained travelling waves.

Again, by gradually increasing the capillary number and starting the computation
from the previous steady solution, we may seek an estimate of the critical capillary
number Ca, above which no steady solution is found. Figure 19(a) shows the
estimated critical capillary number as a function of the drop size for 1=10. In
the absence of inertia, core-annular flows are always unstable to long wavelength
capillary instabilities (Preziosi, Chen & Joseph 1989). We see from figure 19(a) that
the finite size of the drop prevents this instability, since Ca, increases as « decreases.
The drop length L at which instability occurs increases with drop volume, and the
corresponding slenderness 2R5/L of the drop decreases (figure 195); the dimensionless
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FiGure 18. Time evolution of the maximum normal velocity for A=10, « =1.1 and different
capillary numbers. The curves starting at a non-zero time correspond to simulations restarted
from the steady state obtained for a lower Ca.
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FIGURE 19. (a) Estimated critical capillary number Ca. as a function of drop size for 1=10;
the error bars correspond to the last stable and the first unstable Ca; (b) drop length L, film
thickness 4 and slenderness ratio 2R8/L at last stable Ca, as functions of drop size and for
A=10. The dotted lines are inferred.

film thickness 2" =1 — § at which instability occurs decreases (and § increases) as the
drop volume increases. We do not at present have any explanation for these trends.
The increasing drop elongation and the growing number of waves present along the
drop as the flow strength increases are shown in figure 20.

Most nonlinear analyses of the instability of core-annular flow consider the effect
of inertia, which can stabilize the interface when 4> 1 (Joseph & Renardy 1993).
However, inertia is completely absent from the simulations presented here, and so
cannot be invoked to explain the observed final steady wave amplitude. Papageorgiou,
Maldarelli & Rumschitzki (1990) showed that when Reynolds numbers are small, the
Kuramoto—Sivashinsky equation for wave growth includes a dispersive term which
does not affect the growth of linear waves, but which can lead to nonlinear travelling
waves of finite amplitude. Papageorgiou et al. assumed a thin annular film thickness
h* < 1. Although we find that this condition is not, in general, satisfied at the onset
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FIGURE 20. Snapshots of the drop profile for A= 10, « =1.1 and various capillary numbers.
Only the profile at Ca =0.3 is steady.
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FIGURE 21. Estimated critical capillary number Ca,. as a function of viscosity ratio for « = 1.1.
The insets show the drop post-critical behaviour: re-entrant jet (low-viscosity drops) or
oscillatory regime (high- VlSCOSlty drops); m, experimental data by Olbricht & Kung (1992)
for o =1.13. Dotted line, ~ A~ 1/4,

of instability (see figure 19b), the film between wave crests and the capillary wall is
much thinner when the wave amplitude has saturated.

We summarize our results in figure 21, where we plot the critical capillary number
Ca, obtained for a wide range of viscosity ratios when o =1.1. For low-viscosity
drops (1< 1), the post-critical behaviour is characterized by the appearance of a
re-entrant jet at the rear of the drop. Our results suggest Ca.~ A""* for i< 1.
We find a quantitative agreement between our estimated Ca. and the experimental
values reported by Olbricht & Kung (1992) for this breakup mode in the range
0.01 < 1 <0.5. Moreover, we find that for sufficiently large drops (o = 1.1, typically),
Ca, is independent of the drop size for A< 1, as observed in experiments. This is
consistent with the fact that the end caps, where breakup occurs, are independent
of the drop size when the drop is sufficiently long. When A> 1, the drop enters
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the oscillatory regime depicted in figure 17(a) as soon as Ca exceeds Ca.. In this
case, the appearance of the instability depends very much on the viscosity ratio, the
dimensionless drop breadth §(Ca, A) and the dimensionless drop length L/R ~a* §72.
For 4>=0.5, our results disagree with the experimental values shown in figure 21.
This range of viscosity ratios corresponds to drops that are expected to elongate
more than for 4 <0.5 as Ca increases (§4), but over time scales increasing with A.
Indeed, Olbricht & Kung (1992) state that ‘the time scale required for appreciable
drop deformation increases as A is made larger, and this may restrict the deformation
observed in most practical situations for large values of 1’: as noted by Olbricht &
Kung such viscous drops may reach the end of the capillary before reaching their
steady/periodic state. In the example shown in figure 18 (e« =1.1), the dimensionless
time scale necessary for a fully developed periodic motion is O(400), for drop velocities
V* =~ 1.75, which corresponds to a distance travelled of order 700 capillary radii.
The largest drops studied by Olbricht & Kung corresponded to o =1.13, while the
tube used in their experiments was 115cm long with internal diameter 70 mm, i.e.
Ly ~ 328 R. According to our simulations (figures 19 and 21), the most favourable
conditions for observing the oscillatory regime would be large, high-viscosity drops,
allowed to move over distances much greater than the capillary diameter.

For the particular case A=1, we found stable shapes up to Ca=3 (for « =1.10),
corresponding to a dimensionless drop length L/R =~ 22 and aspect ratio L/(2RS) ~
38. At these extreme deformations, the drop exhibits very slowly damped capillary
waves near the drop tail, and reaching a steady state requires very long computations.
We have identified neither a breakup nor an oscillatory regime, although the latter
seems more plausible.

7. Conclusion

The boundary integral computations reported here are merely a first step towards
computations of streaming potentials generated at low Hartmann number, when the
electric fields are too small to modify the flow around the drop. Nonetheless, the
results are of interest in their own right, and we have been able to extend previous
work to a larger range of drop sizes and higher capillary numbers.

For drops sufficiently long that a uniform fluid film exists between the drop and
the wall, interesting features are predicted by the annular flow analysis of §4. The
value A=0.5 (drop viscosity half that of the suspending liquid) plays an unexpectedly
important role in determining the behaviour of the drop at high Ca. It discriminates
drops that can go faster than the unperturbed centreline velocity 2U (4 < 0.5) if they
survive to sufficiently high Ca, from those which cannot (1> 0.5). The sign of V —2U
changes significantly the flow pattern (e.g. figures 36 and 16). When 4 >0.5, the drop
continuously thins as the flow strength increases, until breakup or unstable motion
occurs. A thin drop approximation in the limit § < 1 leads to asymptotic predictions
at high capillary numbers for the drop thickness, the drop velocity and the additional
pressure drop, all fairly well captured by the numerical simulations. Drops with
4 <0.5, on the other hand, seem to approach, at high capillary numbers, a shape with
a non-zero limiting cylindrical radius 8,. As a consequence, the additional pressure
drop tends to a constant, non-zero value depending linearly on the drop volume,
but independent of the interfacial tension between the two phases. The limiting film
thickness 4., =1 — §,, has been previously reported in studies of liquid displacement
by inviscid gas (Taylor 1961; Cox 1962; Giavedoni & Saita 1997) or by another liquid
(Soares et al. 2005), but has not been discussed in the context of finite viscous drops.
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Since in this case the cylindrical radius § is bounded away from zero, with §,, as
large as \/(T ~ 0.632 in the limit A — 0, the infinitely thin drop asymptotics (valid
for 2> 1/2) do not apply. We have not found an asymptotic model appropriate for
such low-viscosity drops, but our simulations suggest that the limiting drop thickness
and velocity may be approximated by (5.3).

No steady state could be found above a certain critical capillary number Ca..
Two post-critical behaviours have been identified, depending on which phase is the
more viscous. If the drop is more viscous than the suspending fluid (4 > 1), capillary
instabilities appear, grow and eventually saturate owing to the presence of the wall.
The drop exhibits periodic oscillations characterized by capillary waves travelling
from front to rear. The dimensionless period of the motion increases linearly with Ca,
but is independent of the drop size. The critical capillary number decreases rapidly
as the drop size or the viscosity ratio increases. Such capillary instabilities have been
well studied for infinitely long, annular flows, but have not, to our knowledge, been
previously observed or predicted for drops of finite length.

When the drop is less viscous than the suspending fluid (4 < 1), we find that the
characteristic dimple at the rear of the drop eventually turns into a re-entrant jet,
leading to burst. The value of Ca, increases as /4 decreases; it becomes independent of
the drop size for a > 1.1, typically, since the end caps of large drops are independent
of the drop volume. The limit film thickness A}, can be better investigated when
considering an infinitely long fluid finger displacing a more viscous liquid (e.g. Soares
et al. 2005): since the rear of the drop is disregarded, the re-entrant jet instability is
not an issue and the capillary number may be increased indefinitely.

A second, companion paper will present results for the streaming potential
generated by motion of an uncharged drop in a capillary with charged walls. We
finally point out that the flow geometry in porous rock rarely consists of straight
capillaries, and there is much still to be done in more realistic geometries.

This work was partially funded by an E.U. Marie Curie fellowship awarded to E.L.,
contract IEF-041766 (EOTIP).

Note added in proof: the difference between the cases A < 1/2 and 4 > 1/2 has
recently been noted independently by Soares & Thompson (2009) in the context of
fluid-fluid displacement in a capillary.
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